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Phase transition in an ensemble of dissipative solitons of a Turing system
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Numerical study of a two-component reaction-diffusion system where Turing spatial structures are formed
has revealed the existence of phase transition between condensed and rarefied phases of dissipative solitons.
The effect is due to the dependence of soliton structure on control parameters. The transition manifests a
hysteresis, which gives evidence for the possibility of phases to coexist.

DOI: 10.1103/PhysRevE.67.035203 PACS number~s!: 82.40.Ck, 05.45.Yv, 64.60.Cn, 89.75.Fb
ru
o
u
ol
.

ed
ys

b-

en
on
o

of

o-

or
u
f t
c

io

e
co
c

he

o
i

eir
,

to-
ast
f

ons
les

s
he

qs.
tate

-

ary

t-
ters

of

ne-

lo-
ay

on
ter-
of
e

he

a
ers.
e-
Reaction-diffusion systems are capable to organize st
tures where localized domains with high concentration
activator are surrounded by the homogeneous backgro
@1–3#. To refer to such element of a pattern, terms autos
ton @3# or dissipative soliton~DS! @4# have been suggested
In the present paper, these quasiparticle states are referr
as DSs. The DSs are experimentally found in different s
tems, including electrical networks@5# and chemically react-
ing media @6,7#. Both stationary and moving DSs are o
served in dc-driven quasi-one-dimensional@8# and planar
@9,10# semiconductor-gas discharge devices. Schenket al.
have theoretically shown@11# that DSs can form stable
molecular-like clusters. It is demonstrated in the pres
work that an ensemble of DSs in a two-dimensional reacti
diffusion system may undergo phase transition between c
densed and rarefied states in the course of variation
control parameter.

This result is obtained by numerical solving of tw
component reaction-diffusion equations earlier suggested@9#
to interpret formation of patterns in planar semiconduct
gas discharge gap systems driven by dc voltage. While s
an approach takes into account some specific features o
gas discharge device, the equations used are a particular
of the general class of two-component reaction-diffus
schemes. They are
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where the variablesU and N are the voltage drop on th
discharge gap and density of charge carriers in the gap,
respondingly. The first equation describes charging the
pacity of the gap from a voltage sourceU0 with the charac-
teristic timetU and its discharging due to free carriers in t
gap;c is the constant of the discharging. The presence ofgN̄
takes into account the global negative feedback that is c
sidered to be proportional to the total number of carriers
the gap. To include it into the local Eq.~1!, its value is
normalized to the average density
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whereS is the area of the system.
The dynamics of density of carriers is governed by th

decay with the lifetimetN and the avalanche multiplication
the first and second terms on the right hand side of Eq.~2!; a,
b, andN* are constants defining the efficiency of the au
catalytic avalanche process in dynamics of carriers. L
terms in Eqs.~1! and~2! describe the diffusion spreading o
variables in the plane of the system. Actually, the equati
refer to a two-dimensional space, while changes of variab
are considered only in lateral direction. Note that variableN
and U may be referred to as activator and inhibitor of t
problem of the system’s dynamics.

In calculations, we consider the set of parameters in E
~1! and ~2! for a model case where the homogeneous s
N.0 bifurcates to a stationary hexagonal pattern whenU0

reaches some critical valueU0
i . Analogously to those ap

plied in Ref. @9#, the main parameters of calculation aretU

51022 sec, tN51023 sec, a51; b50.4, N* 51.5
3105 cm23 DU50.625 cm2/sec, DN50.045 cm2/sec, and
c51.6431024 cm3/sec;

The instability occurs via the diffusion~Turing! mecha-
nism. The characteristic wave vector of a formed station
periodic structure is close to that for neutral modes atU0

5U0
i . The bifurcation is a subcritical one, that is, the pa

terned state exists also in a range of control parame
where the homogeneous solution is linearly stable.

There may be applied in a computing routine two ways
getting a stationary pattern in the domain of subcriticality:~i!
starting from a state where patterns have grown sponta
ously, to go here via a variation of control parameters;~ii !
spatially homogeneous fields of variables are perturbed
cally. When the perturbation is removed, the pattern m
remain in the system~see, e.g., Ref.@3#!. In the present work,
the first method of preparing an initial pattern which then,
later stages of computation, is used to study effects of in
action of DSs has been exploited. A relatively low noise
the variable N, whose amplitude is in the rang
(1023–1025)N, has been applied in calculations.

Different number of DSs may exist in the system in t
subcriticality domain@3#; the minimum quantity is, evi-
dently, one. A bifurcation diagram for the system, including
one-DS state, is given in Fig. 1 for some set of paramet
Here, amplitudes of activator for a DS and for the homog
neous background are presented as a function ofU0 for the
global loadg50.
©2003 The American Physical Society03-1
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The range of existence of a one-DS state is confined
diminishing U0, it is bounded by a critical voltageU0

q at
which the DS solution disappears. The upper bound on
existence is defined, at the given values of parameters, by
process of the self-completion of the hexagonal periodic p
tern on the primary DS as on a seed@9,12#. In the caseg
50, it then occupies all the available space. Then it can
remarked that the critical value of voltage for such a proc
U0

sc,U0
i . We also notice that while applying other param

eters of Eqs.~1! and~2!, the right boundary of the bifurcation
diagram for a one-DS state may be determined not by
self-completion process, but by a division of the primary D
@3,13#.

The structure of DS varies asU0 changes, see Fig. 2. It i
remarkable that, close to~but below of! U0

sc , the tails in
distributions of both activator and inhibitor manifest e
pressed spatial oscillations.~We notice that this peculiarity
has been also observed in experiments made on the c
genic planar gas discharge system@9,10#!. On the contrary, in
the vicinity of U0

q , this feature is not seen.
In the range of stability of a DS, it becomes possible

create a rarefied ensemble of DSs in a spatially exten
domain. In relation to the sensitivity of the DS’s structure
the magnitude of the control parameter, then an influenc
this effect on interaction of the considered quasiparticle
jects can be discussed.

In Fig. 3, a sequence of the system’s states that is
served at varyingU0 is represented, all other parameters

FIG. 1. Part of the bifurcation diagram for Eqs.~1! and ~2!.
Under an increase in feeding voltage, the conductive spatially
mogeneous state~SHS! N.0 is established at the critical~break-
down! voltageU0

b . It is linearly unstable against formation of pe
riodic hexagonal structure atU05U0

i . A stationary dissipative
soliton ~DS! of the shown amplitude exists in the rangeU0

q,U0

, U0
sc ~Fig. 2 shows spatial profiles of DS calculated atL and H

points of the diagram!. In an ensemble, DSs form either a ‘‘ga
eous,’’ or ‘‘crystalline’’ phase. They can also coexist in some ran
of varyingU0. The data are obtained atg50 for the square domain
of the dimensionL53.5 cm. For details of the calculation see t
present text.
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Eqs. ~1! and ~2! are kept unchanged. WhenU0 is slightly
increased aboveU0

i , a spontaneously formed hexagon pa
tern occupies all the available space, Fig. 3~a!. The pattern is,
essentially, a periodic arrangement of maxima in the spa
distribution of activator. Then decreasingU0, a state can be
reached where the number of maxima starts to decrease
further decrease in voltage. A stage in the course of
decrease is shown in Fig. 3~b!. At the conditions of calcula-
tions, it represents not a stationary state; Namely,U0 has
been decreased rather fast. As a result, some activ
maxima have died out, whereas the spatial configuration
the system is not a stationary one that would correspon
the currentU0 value. In other words, the rate inU0 decrease
that induces the quenching of some DSs has been higher
that needed for the adiabatic process of the spatial rec
struction of the pattern containing DSs left in the system

A rarefied structure like that shown in Fig. 3~b! can now
be used as an initial pattern for studying effects of interact
of DSs in the following evolution of the system, for a fixe
value of the control parameter. In order to exclude an ad
tional influence on such a process of events either of furt
quenching of DSs, or of their generation via the se

o-

e

FIG. 2. Calculated spatial profiles of activatorN and inhibitorU
for DS at low~L! and high~H! values ofU0. Data refer to voltages
L andH marked at the bifurcation diagram in Fig. 1.

FIG. 3. Spatial distributions of activatorN obtained in the
course of the following stages of numerical solving of Eqs.~1! and
~2!: ~a! hexagonal stationary pattern spontaneously forms w
voltageU0 exceedsU0

i ; ~b! some maxima in distribution ofN are
quenched asU0 is diminished to low enough values inside th
subcriticality domain. There is observed a phase transition from
‘‘gaseous’’ state of DSs with the repulsive interaction between th
~c!, to the condensed phase of DSs~d! where attractive forces domi
nate their behavior, asU0 increases. The number of DSs remai
constant in the sequence of parts~b!–~d!. Calculations are done fo
the square domain of dimensionL57 cm.
3-2
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completion process, this study is performed in range of
control parameter where the number of DSs inside the
tem’s area remains constant in the course of its relaxation
Fig. 3~c!, the asymptotic spatial configuration of the syste
near the left boundary of existence of a stable solitary DS
shown, while Fig. 3~d! represents a stage in the system
evolution whenU0 is close to the critical value for the sel
completion process.

In both cases, spatially ordered phases of DSs are
served. For lowU0, the ordering of the structure is due
repulsive interaction of DSs, so that their ensemble occu
all the available space. On the contrary, for highU0, the
ordered state occupies only a part of the system which g
evidence for condensation of DSs into a compact pha
Hence, the transition between rarefied~gaseous! @14# and
compact~crystalline! phases may be induced via varying t
control parameter. We point out that number of DSs left
the system atU0

q,U0,U0
sc is determined both byU0 value

and by the system’s prehistory. In such a way, at the re
sive interaction of DSs one can get~in a studied case of a
low noise! a multiplicity of spatially ordered phases wit
different lattice spacings. On the contrary, for high values
U0(U0,U0

sc), number of particles in the condensed pha
may be different, while the lattice period is nearly fixed.

The phase transition influences transport properties of
system which can be characterized by its conductancs

;N̄/Us , whereUs5U02gN̄. Figure 4 shows an exampl
of variation of N̄ at a slow ~quasiadiabatic! change in the
feeding voltage. It has been observed that transitions f
gaseous stateA to the crystalline oneB and back are speci
fied by theS-type behavior of the transport curve.~In order
to reveal this effect, an external loadg.0 has been applied
in calculations!. This indicates the presence of the negat

FIG. 4. Average density of activatorN̄ versus voltage dropUs

on the structure in the domain of transition from purely ‘‘gaseou
stateA to the ‘‘crystalline’’ oneB. The effective conductance of th
system is higher for the condensed phase of DSs as compared
gaseous phase, upper, and lower branches of the hysteresis
correspondingly. To make the computing time reasonably short
sequence of quasiadiabatical states is obtained for a rather d
ensemble of DSs, their number over the calculated area oL
53.5 cm being 78. The feeding voltageU0 is changing in the range
1265–1300 V atg5531023.
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differential conductance of the system in the course o
transition. An expressed hysteresis in the data gives evide
for the possibility of a coexistence of crystalline and gase
phases of DSs in some range of changing the control par
eter.

We also notice that, near the point of the phase transit
the system exemplifies the slowing down of dynamics
transient processes. The characteristic form of relaxatio
not, however, the exponential one: The speed of relaxa
depends on how distant the system is from a final ste
state. For initial phases of the process, the rate of relaxa
is rather high. In case of the transition ‘‘gas→ crystal,’’ this
stage corresponds to a condensation of nearby DSs
quasimolecular aggregates~stable spatial configurations fo
some of these aggregates have been treated in Ref.@11#!.
Then more slow processes of aggregation proceed, which
related to the inclusion of more distant DSs into their co
densation, as well as to the drift and slow turning of prima
formed clusters of DSs. The overall process is character
by a spectrum of relaxation times~by the stretched kinetics!.

It is appropriate to stress that Eqs.~1! and ~2! are sug-
gested to describe pattern formation in an electrical sys
@9#. There the DS is actually a filament of electrical curre
The present consideration suggests that the spatial con
ration of a multifilament pattern of current can be controll
with feeding voltage. The pattern may be either in the fo
of a spatially dispersed ensemble of filaments~which occurs
at the state where the repulsive interaction of filaments ta
place!, or in the form of a compact bunch of them. In th
latter case, we have the bounded-in-space current cha
that has a spatially modulated internal structure accordin
the Turing mechanism.

Processes similar to that considered in the present s
are expected to exist for other models including those be
suggested to describe self-organization of chemical me
Indeed, Eqs.~1! and ~2! are, essentially, a variant of th
Gray-Scott model@15# introduced for the description of non
linear chemical reactors. We also remark that phase trans
from a dispersed to a condensed state of DSs is, as a m
of fact, a bifurcation occurring in the nonlinear system wh
its steady state solution changes at some~critical! value of a
control parameter.

While DS is a generic element of patterns in reactio
diffusion media, considered phase transitions can be
pected to exist in various experimental systems. We belie
however, that the semiconductor-gas discharge device m
occur as a good candidate for searching these effects. It
flexible experimental system with two natural control para
eters, which are the feeding voltage and the intensity of li
which controls the conductivity of the semiconductor co
ponent. In experiments on these systems, both compact
agonal clusters and patterns that consist of multiple spot
the gas discharge plasma have been observed@9,10#. How-
ever, up to now, the existence of a transition between
distinct phases that would be specified by a hysteretical
havior similar to that shown in Fig. 4 has not been prove

One has to point out, however, that, in a pure case,
effect manifests itself as a reconstruction of the~quasi!sta-
tionary pattern when control parameters are changed

’’

the
op,
e

nse
3-3



o
nt
n

h
in
clu
c

u-
e
r of
sti-

us-
50.

RAPID COMMUNICATIONS

YU. A. ASTROV PHYSICAL REVIEW E67, 035203~R! ~2003!
formly over the active area, whereas number of DSs is c
stant. This requires the high homogeneity of an experime
system so that regularities of interaction of DSs in differe
parts of the system are the same.

Finally, we remark that a ‘‘free’’ DS that may coexist wit
the condensed phase seems to be more sensitive to the
ence of natural noise of a real system as compared to a
ter of particles. Noise gives rise to an appearance of lo
e

r-
.
o
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transversal gradients in an active medium, which may stim
late the propagation of a DS@16#. In such a case, the whol
pattern may have the appearance of a stationary cluste
particles, which is immersed into an ensemble of stocha
cally traveling DSs.
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